Quantum mechanics 11, Solutions 1 : Recap of the basics

TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard Puig,
Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : Bloch sphere for pure states

1. Show that any quantum state |1) of a 2 level system with classical states |0) and |1) can be written
0 o 0
|¢> :COS§|O>+6 Sln§|1>a b€ [Oaﬂ-]a ¢6 [Oa2W)7 (1)

and conclude that the unit sphere in 3D allows for the representation of a pure state of a 2 level
system (qubit, spin 1/2, photon,...). We call this unit sphere the Bloch sphere

Any state in a 2 level system can be written as

[¥) = al0) + B]1), (2)

where a, 8 € C. We can write these complex numbers in polar form, that is o = pe?” and 8 = ¢e®, to
see more explicitly that, prior to applying any constraint, |1) is really characterised by 4 real quantities :
p,q,y and §, with p, ¢ € [0,00) and v, d € [0, 27). Now if we apply the normalisation constraint |(¢]¢)] =1
we get

la? + 6 =p* +¢* = 1. (3)

Under this constraint, notice that now p,q € [0,1]. It is always possible to find a 6 € [0,7) such that
p = cos6/2. From Eq. 3 we then deduce that ¢ = sin6/2. So now Eq. 2 reads

0 .
[1)) = cos §€W|0> + sin ge“;m (4)
=€ (cos g\O) + sin Zei(6_7)|1>) , (5)

where, without loss of generality, we extracted the phase of |0) as a global phase. Recall that a global
phase is not physical and cannot be measured experimentally in the case of a single qubit. Hence we can
fix the global phase to be v = 0. By defining ¢ = § — v we recover the result of interest.

2. In the case of a 1/2 spin, the convention for the north pole is |0) (resp. the south pole |1)) with the
eigenstate of oz of eigenvalue +h/2 (resp. —h/2). Show that state 1) of Eq. (1) is the eigenstate of
o, = 0.n, where n is a unit vector with direction parametrized by € and ¢ in spherical coordinates
and o = (04, 0y,0.). In a classical picture of the spin, n would then designate the direction in which
that spin is pointing.

We are told that n = (sinf cos ¢,sin@sin ¢, cosf) and o = (0,,0,,0.). We can then readily apply the
operator
_ - cosf sin @ cos ¢ — i sin @ sin ¢
U"_U'n_(sin&cosqﬁ—i—isin&sinqb —cosf ) (6)
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to the state |[¢) = ( ) in the following way

¢ sin ¢
) = cos sin 0 cos ¢ — i sin f sin ¢ cos g (7)
Tn sin @ cos d) + i sin @ sin ¢ —cosf €' sin g
_ (cos 9 cos § + €' sin & (sin 6 cos ¢ — i sin f sin ¢>) (8)
- cos (sin 9 cos ¢ + isin 0sin ¢) — €'? cos O sin ¢ 5
_ cos 0 oS 3 0 + sin 5 9 sin 6 ()
—\e? cos 2 sin 9 —e'? cos 0 sin 2
cos 2

- ( o ) (10)

(11)

where, in the first vector entry, we expanded e'® = cos ¢ + isin ¢, used the identities cos? ¢ + sin? ¢ = 1
and sin(#/2) sin § + cos(0/2) cos § = cos(#/2), while for the second entry, we identified cos ¢ +isin ¢ = e'®
and then used the identity cos(6/2)sin 6 — cos0sin(6/2) = sin(6/2). So we conclude that indeed [¢)) is an
eigenstate of o, with eigenvalue 1.

3. Sketch on the Bloch sphere the effect of applying the operators o, o, and o, to an arbitrary state

|).
Let’s separately apply the Pauli operators to the state |¢) :
'L¢ 31 Q . 3 Q . < (T U 9/ = — 9
) = (o) —ee (e ) e (Tl ) = 1020 (12)
COS 3 e Cos 35 e sin (7) o =—0
—ie*® sin ¢ gy sin ¢ . cos (24 0 =m—0
oyl¥) = ( icos? 2> = —ie'? (ei‘l5 020s 9) = —ie? (ei(’r@ (sm2(’)r) = /— » (13)
2 2 2 =m—09
(4 (4 9 =0
_ €os 3 _ ([ cos3
o:1¥) (e“z’ sin g) <ez(”+¢) sin g) — {¢’ =1+¢ (14)

We manipulated the expressions to be able to directly read off the new angles #’ and ¢’ parameterizing
the state obtained after applying a Pauli operator. Again, the global phase is neglected. To visualise these
transformations, in Figure 1 we show the effect of each Pauli operator when applied to the state [i))
characterised by (6, ¢) = (7/4,0). From Figure 1, we see that the Pauli o operator, a € {x,y, 2}, rotates
the state by 180° around the a-axis.

oylw)
o)

FIGURE 1 — Effect of the Pauli matrices.

4. Prove that the Pauli matrices together with the identity form an orthogonal basis of all (hermitian)
operators acting on a 2 level system.



We first show that the Pauli matrices form a basis in the space of 2 x 2 Hermitian matrices.
Spanning the space : Any Hermitian matrix H satisfies H = H' and so can be written as follows

a (* a b—ic
i = (5 d) (b+ic d)’ (15)

with a, b, c,d € R. Our goal is then to show that this general expression for H can be written as a linear
combination of the Pauli matrices, that is

_(p+s qg—ir
p00+q01+r02+803_<q+ir p—s)’ (16)

for some p,q,r,s € R. This is easily achieved with p = (a +d)/2,s = (a — d)/2,q = b and r = ¢. We can
thus conclude that the Pauli matrices span the space of 2 x 2 Hermitian matrices.

Linear independence : We need to show that it is not possible to express one Pauli matrix as a linear
combination of the other Pauli matrices. We do this by contradiction ; we seek p, ¢, r, s which weight the
Pauli matrices to sum to zero, implying linear dependence :

_(p+s q—wry (0 O
pao—i—qal—i—rag—l—sag—(quir ps)_(O 0>. (17)

The only solution to this set of 4 linear equations is p = ¢ = r = s = 0, hence the Pauli matrices are
linearly independent.

Hence we conclude that the Pauli matrices indeed form a basis. Now we finally show that this basis is
orthogonal. As a reminder, two vectors v, w € R™ are said to be orthogonal if v -w = 0, or more explicitly,
i viw; = 0. For matrices, the analogue of this sum (where all indices are “contracted”) is the trace
operation. One can verify that Tr[o;0;] = 20,;, meaning that while the Pauli matrices are orthogonal, they
are not orthonormal because of this factor of 2. Note that the case i = j can be treated rapidly because
Tr[o;0;] = Tr[o?] = Tr[l] = 2, using the involutory property of the Pauli matrices (i.e. o7 = I).
5. Show that
e — cos(9)l — isin(¥)n.o . (18)

We can use the exponential series expansion to recover the desired result. First, to give us a bit of intuition
on the general result, we consider the special case where n = (1,0,0), so that n- o = o,. In this case we
have

e~ — | —ifo, — %9203 + %9303 +0(6*)
= <| - %9% + 0(94)> —i (9 — %93 + 0(95)) O
= cos 0l — isinfo,, (19)
where we used 02 = |. Now to prove the general case, we can proceed similarly as above and split the
even and odd terms
oo . oo ; o0
e kzzo (_;j)k(“ )= kz:% (IQZ;'% SO 2) 21299—1—%;1 (n- )L (20)

The expression involves terms of the form

3 2 3 3
= E n;o; = E E nin;o;0; = nin;o;oy, (21)
i=1

i=1 j=1



where in the last equality we have adopted the Einstein summation convention where repeated indices are
summed over. Now using the identity o;0; = d;;1 + i€;;,0% (with the index & summed over) we get

(n- 0')2 =n;n;(0;;1 + i€ 0k)
=n-nl+ 1 +inn;e o
= |+ iepnin oy
=1+4i(nxn)gog (22)
— (23)

where for the first term we used that n is a vector of unit norm, and for the second term we swapped
twice the indices of the Levi-Civita tensor (leading to 2 minus signs — yielding a plus sign), identified the
definition of the cross product in terms of the Levi-Civita tensor, and noticed that the cross product of a
vector with itself gives 0. Now more generally we have

(n . 0')2k — I, (24)
e (25)
Putting everything together we obtain the desired result
0 o k; 02]@ e} . 92k+1
—n-o __ _ . _ g . B e .
e = kZ:O( 1) (2]4:)!' 2];( 1) 2k 1)!n o =cosfl —isinfn - o. (26)

6. Hence sketch the action of an arbitrary state on the Bloch sphere under e~*™-.

In the lecture notes, we explicitly demonstrate that e~*/?: induces the following transformations on the
angles of the state |¢p) : @ — 6 and ¢ — 29 — ¢. This corresponds to a rotation by an angle of 29 with
respect to the z-axis. Similarly, e~/ and e~*’?v correspond to 21 rotations about the z and y axes
respectively. Since we chose |0) and |1) to be the eigenstates of o, if we write these rotations operators
in this so-called computational basis of |0) and |1}, we get

—ido, - [ cosV —isin v

¢ o (z sind  cosd ) ’ (27)
_ive, - [cOs¥ —sin?

¢ ' = (sin 9 cosv ) ’ (28)

—ido, - 67’“9 0
€ 192:< 0 eiﬁ)a (29)

where the dot on top of the equal sign is there to remind us that a choice of basis has been made (and a
different choice would result in different expressions). In particular, we see that under this convention, o,
is diagonal. As a side note, in terms of the z-basis states (|0) and |1)), the orthogonal z-basis states read

1
V2

Hence in the |£) basis (the eigenstates of o), the operator ="’ would have the same matrix represen-
tation as in Eq. 29. The same holds true in the y direction, where the orthogonal y-basis states are

1
V2

This is just a statement that there is no preferred direction.

|+) (10) £ [1)). (30)

[R/L) = —=(]0) £i[1)). (31)

As an example, we show in Figure 2 how the operator e~"??, with ¥ = m/4, acts on the state [1))
parameterised by (0, ¢) = (7/4,0). As we can see, e ~*?= corresponds to a rotation about the z-axis by an
angle 2¢. In general, e~"/™7 corresponds to a rotation by an angle 20 about the axis of rotation specified
by the unit vector n. Hence the Pauli matrices are often called the generators of rotation in this context.
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FIGURE 2 — Action of e~®™% on the state [¢)).

7. Compute the expectation value of the Pauli operators o, o, and o, for the arbitrary state |¢).
Explain your answer in terms of the Bloch sphere.

After a bit of algebra, one obtains

32
33
34
35

(Y|o|y) = sin b cos ¢,
(Y]|oy|Y) = sinfsin ¢,

(
(
(Yloz]y) = cos . (
(

T —

which corresponds respectively to the x,y and z spherical coordinate components, respectively, of the unit
vector parameterized by (6, ¢) on the Bloch sphere.



Problem 2 : Rethinking the thought experiment

Consider the thought experiment described in Section 1.4 of the course notes. I'll copy it over here for
simplicity.

Thought experiment 1 : We start with a system in state |0). We wait half an hour (in our units, from
t =0 to t = 1/2) before measuring it. We then find that 50% of the time it is in state |1) and that 50%
of the time it is in state |0).

Thought experiment 2 : We start with a system in state |1). We wait half an hour before measuring
it. We then find that 50% of the time it is in state |1) and that 50% of the time it is in state |0).

Let U = e *H* represent the evolution of the system as we “wait for ¢ hours". The state of the system pre-
measurement in the two experiments can therefore be written as |¢)) = U|0) and |¢) = U|1) respectively.

1. Write down the most general form for the states [¢)) and |¢) that are consistent with the observed
outcomes in experiments 1 and 2.

Both states have the same probability distribution over o.-basis states |0) and |1). Let us first consider

[1)). We know that
1

[ Ol) * = 1 (1) [* = 3 (36)
Which states fulfil that ? We saw earlier that the general state of a qubit can be expressed as
lp) = cos% |0) + sin %e*iﬁ 1), (37)

with general probability
2

[ (0[4) 12 = [eos S| (38)
which imposed to be %, admits
a1 _T
cos” o =3 = a=g. (39)
This constraint does not impose anything in 3, thus the most general state is
1 —i
[¥) = —=(10) + e [1)). (40)

V2

The negative sign of 3 is completely arbitrary. Because |¢) and |¢) both satisfy the constraints from which
we produced this form, they are both described by it, with different 3, e.g. 5 and 8’ respectively.

However, for U to be a valid unitary, |1)) and |¢) cannot be completely independent ; satisfying UUT will
constrain the relative values of § and ’. A quick way to derive this constraint is to realise that because
the input states are orthogonal :

(1l0) = 0 (41)
so too must the output states :
(o) = (1| UTU |0) = (1]0) = 0 (42)
Ergo if
9) = (10} +¢7% 1) (43)
16) = —=(10) + e~ 1)) (44)

R



then unitarity requires

(8he) = 51+~ =0 (15)

This implies that e~ B=F") = —1, or in other words 8’ = 8 + .

Thought experiment 3 : We start with a system in state |0). We wait half an hour before measuring
it. We then find that 50% of the time it is in state |1) and that 50% of the time it is in state |0). Then
we wait another half an hour before measuring again. We then find that 50% of the time it is in state |1)
and that 50% of the time it is in state |0).

2. Use your answer to (a) to explain the result of the third thought experiment.

We previously showed that both [¢) and |¢), which result from evolving states |0) or |1) for half an hour,

have the form : )

) 7

When we measure in the o.-basis, we collapse the state into classical states |0) and |1). We have re-
produced our initial states. Ergo subsequent evolution and measurement is just a repetition of the initial
process, and ergo yields the same statistics.

(10) + e [1)). (46)

Thought experiment 4 : We start with a system in state |0). We wait a full hour before measuring it.
We find that the system is always in state |0).

3. For concreteness, let’s now assume that |¢)) = U|0) = %(|O) +|1)). Write down two non-equivalent !

unitaries that U could be and the corresponding Hamiltonian H (hint - think about Problem 1)
which would generate them.

Geometric solution

We can approach this geometrically, recognising that [¢)) = %(|O> +11)) (i-e. the |+) state) can be reached
from |0) by a m/4 rotation about the o, axis.
eTFII0) = [+) = [¥). (47)

The same rotation would transform the |1) state to :

e #o|1) = )+ )=1=)- (48)

1 1
— 0} + —= 1
VoA
So a U = e~ %% achieves U |0) = |¢), but there may still exist other unitaries which produce the same

state. We can find them by considering subsequent operations which do not change the state |[¢)) = |+),
but which are free to change |—). We recognise that |+) and |—) are eigenstates of the o, operator, i.e.

(49)

Ergo realise that o, e~ %%9v |0) = 0, |[+) = |¥). Two candidate unitaries (which we here needlessly express
as o,-basis matrices) are :

1 1
Uy = i ( z i ) (50
V2 V2
1 1
UQ:azm:(VF Vi ) (51)
V2 V2

1. i.e. not the same up to a global phase



You might wonder ; are these the only two unitaries that satisfy U |0) = |¢)) 7 Absolutely not! We can
think up more subsequent operations which induce only global phases upon [¢) but which are themselves
not merely a global phase operator (i.e. they are not of the form e??1). We realise that any rotation about
the o,-axis will not modify its eigenkets |[+) and |—), but will apply distinct phases to them. The spectral
theorem lets us write this explicitly as

{eeiow |+> — eei |+> (52)

eioa |_> — oY |_>

If we wish to keep |+) unchanged, we merely apply a global phase factor e~ which undoes the phase e’

of |4} induced by the rotation. Ergo the continuously-parameterised unitary
Uf) =e® . e . emilow (53)
_ eQi (oa—1) . e—%ioy (54)

effects U |0) = |¢) for any 6 € [0, 27).
Analytic solution

We can also approach this problem non-geometrically. We recognise that U |0) = |¢) immediately constraints

the leftmost column of U :
< ¢
U= <\{§ b) (55)

where a,b € C. To be a valid unitary however, it must satisfy UTU = I, and ergo (expanding the matrices)
that (for any complex phases «, 8 € R) :

la? = 1 = a= Lem
i 2
b2 ==, — b= ——¢"
0] 21 \/51 | (56)
ela
A b= —— =~ _
“ > 2 2

Therefore, all unitaries of the below form, for any real value of «, produce U |0) = |¢).

U= % G _e:a> . (57)

Corresponding Hamiltonian

We next seek the Hamiltonian which describes this evolution, and which generates our U operator. That
is, we seek H which satisfies H = H' and e "#t = U = e % %72 ¢~ %10w at ¢t = 1,

There are several ways of doing so, one of which begins by expanding the exponential as performed in
Problem 1.5 :

e 0ieioeemimou/4 — o701 cos ) — isin QJI)E(l —ioy) (58)
=e % (1 cos 6 cos % — i(sin 6 cos %aw + sin % cos 0o, + sin 0 sin gaz)) (59)
=e % (1cosz + isinz(o-n)) (60)
_ e—éie—ix(a‘n) (61)

1
sinx

where in the last equality we have defined cos x = cosf/cos 7} and n = (sinf cos §, cos @ sin §,sin fsin 7).



We can either discard the unphysical global phase e~% or let it merely add an e~%1 term to our Hamil-

tonian which shifts the energy spectrum (which does nothing). Discarding the global phase, our unitary
has been expressed as U = e ~**(??) g0 our Hamiltonian H ergo satisfies

e—th‘t:% — e—ix(o-n)’ (62)

1
= — ZH§ = —iz(o - n), (63)
= H =2z (0 -n) (64)

4. Compute the corresponding state |¢) for the two cases.

We can apply the two unitary matrices Uy, Us in Eq. (51) to |1) to see that

Ur[1) = e 317 1) = |-) (65)
Ua|l) =0 Ur 1) =—1|-). (66)

It is worth noting the two unitaries produce states +|—); this is the same physical state, modulo the
fictitious global phase. They remain distinct unitaries however (i.e. they themselves differ by more than
just a prescribing global phase). We can appreciate this by applying them to arbitrary superpositions,
in which case the unitaries prescribe different relative phases, which are physical. Explicitly (foregoing
normalisation for clarity) :

Ur(l0) + 1) = [+) + =), (67)
Us(10) + 1)) = |+) = =) (68)

5. Given that in experiment 4 the system was always found in |0), what can we say about the Hamil-
tonian of the system ?

Period

This tells us the evolution is periodic (as is all unitary evolution) with a maximum period of ¢ = 1 hour.
This is because unitary evolution is linear ; if we ever evolve back to our initial state, we must have evolved
for an integer multiple of the period.

We know that ¢ = 1 cannot be an even multiple of the period, because the state is not |0) at t = 1/2,
where we know it instead to be |+). It remains possible that ¢ = 1 is an odd multiple of the period. The
period can ergo be any element of the set

1
{ﬁ :n is an odd, positive integer} (69)

- nl .n €N} (70)

Hamiltonian

What does that imply about the Hamiltonian ? There are multiple ways to think about this. One method
is to consider how an eigenstate |\;) of the Hamiltonian is time-evolved :

efth |)\1> = eii)\it )\z> . (71)

This is a result of the spectral theorem, and tells us that eigenstates merely experience a phase oscillation
at frequency w; = g‘—ﬂ An arbitrary state can always be expressed in the complete basis of Hamiltonian
eigenstates, so all unitary-time evolution can be understood as merely eigenstates phase-oscillating at

different rates :
e—th § a; |/\z> _ E a; e—Mit

Ai) - (72)



The periodicity of unitary-time evolution tells us information about the Hamiltonian spectrum, i.e. the
eigenvalues {); : ¢}. Can you figure out what ? :)

The link is much simpler for the single qubit case, where we have eigenvalues A1 and \s. Because the
absolute value of the energy eigenvalues is unphysical (that is, translating them all up or down does not
change the described system), we can arbitrarily shift the lowest eigenvalues (the “ground state') to be
zero. Now our two eigenvalues are 0 and (A2 — A1). The time evolution is now :

e HE (o [ M) 4 ag [A2)) = are® |Ay) + e A2, | )y) (73)

All the time dependence is in the complex phase of the second eigenstate. The coefficient e~ (A2=A1)t

(a=21) 2”)\ . Therefore, knowing the period
1

oscillates with frequency
P =1 tells us...

5, or equivalently with period P = po

21

P=1=——
A2 — A

— Mo — A\ =27 (74)

that the difference between the energy eigenvalues is 27.

1

Knowing therefore that the period is P = for any positive integer n, tells us that the possible

2n+1
difference between the energy eigenvalues is :
1 27 27
2n+1 AX 2n+1 (75)

One qubit dynamics

Another way to interpret how the known period relates to the Hamiltonian is to realise that all two-level
(i.e. one-qubit) dynamics is sinusoidal. We can use one-qubit Pauli matrices as a basis to represent the
Hamiltonian H. Indeed, we previously demonstrated that H = wo - n. We can apply the solution of
problem 2.5 to see that

U(t =1)]0) = cosw |0) —isinw(o - n)|0) = e |0) (76)

which means that | cosw| = 1, or in other words w = mn where n € N.

The other option is that ¢ - n = ¢,. In this case the system does not change.

10



Problem 3 : Collection of tensor product exercises

Consider a state |1} of five quantum particles, each with two levels denoted |0) and |1), which is initially

) =10) ® |0) ® |0) ® |0) ® |0)
= |00000) .

We will identify these five particles with an index 0 < i < 5 beginning from zero, which indicates the
rightmost ket above.

1. Write down the state produced by applying the o, operator to the rightmost particle (of index
i =0). Write the bra version of it.

Because these are two-level particles, we call them “qubits" for brevity. We apply the one-qubit Pauli
operator upon the qubit’s corresponding ket in the tensor product. Let X; denote a o, operator acting
upon the i-th qubit, i.e.

Xo |¢) = 10) ®|0) ® |0) @ [0) © (02 0))

=10) ® |0) ® |0) ® [0) ®|1)
=100001) .

The corresponding bra state is simply

(¥ X§ = (0] ® (0] ® (0] ® (0] ® ((0] 7) = (00001]. (77)

2. Write down the state produced by applying the o, operator to particle i = 3. Write the bra version
of it.

As above, we apply o, upon particle ¢ = 3, which is the fourth qubit from the right.

Y3 |¢) = |0) ® (0 |0)) ®[0) @ |0) @ [0)
=10) @ (—i[1)) ©[0) ®[0) ® |0)
= —4]01000)
where we have commuted the scalar factor to the front of the tensor product. The corresponding bra state
is
(| Y4 = (Vs )T = (=i ]01000))" = (—i)* |01000)" = i (01000] . (78)

3. For two arbitrary matrices A, B compute the commutator of [A®1,1® B] and the anti-commutator
{A®1,1® B}. Recall that [4,B] = AB — BA, {A, B} = AB + BA.

We simply substitute the definitions of the commutator and anti-commutator. Let us start with the
commutator

[A®1,1®8B]=A®1- 18 B-1@B-A®1 (79)
—A®B-A®B (80)
=0 (81)

For the anti-commutator we can similarly do

{A®1,19B}=A®1-19B+19B-A®1=AQB+A®B=2A®B (82)
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4. The exponential of a sum of matrices satisfies eA*? = e4eP if [A, B] = 0. Use this and the previous

exercise to show that eA®1T1®8 — o4 ¢ B

In the previous exercise we showed that [A ® 1,1 ® B] = 0. Thus we can use the identity in the question

cABIH1®B _ ,A®1,18B

We can now see that if we Taylor expand e4®! and ¢'®F :

K

k k
eA®1:27(A®1) Z%@lze‘q@l
—~ k!

k

where we have recognised (A® 1)¥ = (A®1)(A®1)...(A®1) = Ak @ 1¥ = A, Similarly

o5~ (1®@B)F BF B
e *Zik! 71®;H71®6

k

If we go back to Eq. (83) and apply this results we see that

CABLHIOB _ (A1 108 _ (A o 1.1 g eB = A g B

5. Write the matrix version of a [0X1] + b |1)1].

Hint : recall that |0) = (1,0)T, [1) = (0,1)T and that |0X1| = |0) ® (1].

ol =l = (o) @ 0.0 = (5 0]

Therefore

a|0Y1] = a (8 é)

s = (g 9)

al0X1|+b[1)X1| = (8 8) + (g

6. Let A, B be two 2 x 2 matrices. Compute A ® B.

Il
~/

Similarly

and we conclude

)-

bll b21

A= (au G21)7B: (
a12 Aa22 b12

Then
a11b11
a1+ B axn-B a11b12
(alz B ag- B) ai2bi
a12b12

12

ay1by
a11b22
a12b21
a12b22

b22

)

0 a
0 b

az1b11
as1bi2
az2b11
a22b12

)

a21b21
a21b22
a22b21
a22b22

(83)

(84)

(85)

(88)

(89)

(90)

(91)

(92)



